Microfibrous-Structured Pd/AlOOH/Al-Fiber for CO Coupling to Dimethyl Oxalate: Effect of Morphology of AlOOH Nanosheet Endogenously Grown on Al-Fiber.

Title Microfibrous-Structured Pd/AlOOH/Al-Fiber for CO Coupling to Dimethyl Oxalate: Effect of Morphology of AlOOH Nanosheet Endogenously Grown on Al-Fiber.
Authors C. Wang; J. Ding; G. Zhao; T. Deng; Y. Liu; Y. Lu
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b00889
Abstract

We report a green, template-free, and general one-pot method of endogenous growth of free-standing boehmite (AlOOH) nanosheets on a 3D-network 60 ?m-Al-fiber felt through water-only hydrothermal oxidation reaction between Al metal and H2O (2Al + 4H2O ? 2AlOOH + 3H2). Content and morphology of AlOOH nanosheets can be finely tuned by adjusting the hydrothermal oxidation time length and temperature. Palladium is highly dispersed on such AlOOH endogenously formed on Al-fiber felt via incipient wetness impregnation method and as-obtained Pd/AlOOH/Al-fiber catalysts are checked in the CO coupling to dimethyl oxalate (DMO) reaction. Interestingly, Pd dispersion is very sensitive to the thickness (26-68 nm) of AlOOH nanosheet, and therefore the conversion shows strong AlOOH-nanosheet-thickness dependence whereas the intrinsic activity (TOF) is AlOOH-nanosheet-thickness independence. The most promising structured catalyst is the one using a microfibrous-structured composite with the thinnest AlOOH nanosheet (26 nm) to support a small amount of Pd of only 0.26 wt %. This catalyst, with high thermal-conductivity and satisfying structural robustness, delivers 67% CO conversion and 96% DMO selectivity at 150 °C using a feed of CH3ONO/CO/N2 (1/1.4/7.6, vol) and a gas hourly space velocity of 3000 L kg(-1) h(-1), and particularly, is very stable for at least 150 h without deactivation sign.

Citation C. Wang; J. Ding; G. Zhao; T. Deng; Y. Liu; Y. Lu.Microfibrous-Structured Pd/AlOOH/Al-Fiber for CO Coupling to Dimethyl Oxalate: Effect of Morphology of AlOOH Nanosheet Endogenously Grown on Al-Fiber.. ACS Appl Mater Interfaces. 2017. doi:10.1021/acsami.7b00889

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Palladium

Palladium Bohr ModelSee more Palladium products. Palladium (atomic symbol: Pd, atomic number: 46) is a Block D, Group 10, Period 5 element with an atomic weight of 106.42. The number of electrons in each of palladium's shells is 2, 8, 18, 18 and its electron configuration is [Kr] 4d10. The palladium atom has a radius of 137 pm and a Van der Waals radius of 202 pm. In its elemental form, palladium has a silvery white appearance. Palladium is a member of the platinum group of metals (along with platinum, rhodium, ruthenium, iridium and osmium). Elemental PalladiumPalladium has the lowest melting point and is the least dense of the group. Palladium can be found as a free metal and alloyed with other platinum-group metals. Nickel-copper deposits are the main commercial source of palladium. Palladium was discovered and first isolated by William Hyde Wollaston in 1803. Its name is derived from the asteroid Pallas.

Related Forms & Applications