American Elements
   



Promethium
Promethium Informationen, einschließlich Technische Daten, Safety Data und seine Eigenschaften, Forschung, Anwendungen und andere nützliche Fakten sind erörtert werden. Wissenschaftliche Fakten, wie die atomare Struktur, Ionisierungenergie, Fülle auf der Erde, Leitfähigkeit und thermischen Eigenschaften sind im Preis inbegriffen.

 

  Hydrogen                                 Helium
  Lithium Beryllium                     Boron Carbon Nitrogen Oxygen Fluorine Neon
  Sodium Magnesium                     Aluminum Silicon Phosphorus Sulfur Chlorine Argon
  Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Hydrogen Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
  Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
  Cesium Barium Cerium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon
                                     
      Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium    
      Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawerencium    


(Klicken Sie auf ein Element)

Promethium ist ein Block F, Gruppe 3, Periode 6 Element. Die elektronische Konfiguration [Xe] 4f5 6s2. In seiner elementaren Form Promethium's CAS ist der 02. Dezember 7440. Die Promethium Atom hat einen Radius von 183.4.pm und es ist, Van der Waals Radius ist 200.pm.

Promethium entdeckt wurde von J. A. Marinsky, Lawrence Glendenin und Charles D. Coryell im Jahr 1945.

 

 

Frenchprométhium German Promethium Italian prometio PortuguesePromécio Spanish prometio Swedish Prometium

Promethium Abundance. The following table shows the abundance of promethium and each of its naturally occurring isotopes on Earth along with the atomic mass for each isotope.

Isotope
Atomic Mass
% Abundance on Earth
Pm-143
142.910928
-
Pm-145
144.912744
-
Pm-147
146.915134
-

Promethium Safety Data. The safety data for promethium metal, nanoparticles and its compounds can vary widely depending on the form. For potential hazard information, toxicity, and road, sea and air transportation limitations, such as DOT Hazard Class, DOT Number, EU Number, NFPA Health rating and RTECS Class, please see the specific material or compound referenced in the left margin.

Ionisation Energie. Die Ionisierungenergie für promethium (die am wenigsten Energie benötigt, um ein einzelnes Elektron aus dem Atom in seinem Grundzustand in der Gasphase) ist in der folgenden Tabelle dargestellt:

1st Ionization Energy
538.39 kJ mol-1
2nd Ionization Energy
1051.70 kJ mol-1
3rd Ionization Energy
2151.64 kJ mol-1

Conductivity. As to promethium's electrical and thermal conductivity, the electrical conductivity measured in terms of electrical resistivity @ 20 ºC is - µOcm and its electronegativities (or its ability to draw electrons relative to other elements) is -. The thermal conductivity of promethium is 17.9 W m-1 K-1.

Thermal Properties of Promethium. The melting point and boiling point for promethium are stated below. The following chart sets forth the heat of fusion, heat of vaporization and heat of atomization.

Heat of Fusion
12.6 kJ mol-1
Heat of Vaporization
- kJ mol-1
Heat of Atomization
308 kJ mol-1



 
Formula Atomic Number Molecular Weight Electronegativity (Pauling) Density Melting Point
Boiling Point
Vanderwaals radius
Ionic radius Energy of first ionization
Pm 61 [145](0)  g.mol -1 - 7.26 g/L 1042 °C 3000 °C .200 nm - pm 538.39 kJ.mol-1

PRODUCT CATALOG German Operations Submicron & Nanopowder Tolling Ultra High Purity Sputtering Target Crystal Growth Rod, Plate, Powder, etc. Foil
 
© 2001-2007. American Elements is a U.S. Registered Trademark. All rights reserved.
This website and all pages, designs, concepts, logos, and color schemes herein are
the copyrighted proprietary rights and intellectual property of American Elements.

 

Recent Research & Development for Promethium



  • Comparative biokinetics of trivalent radionuclides with similar ionic dimensions: promethium-147, curium-242 and americium-241. Radiat Res. 2007 Sep;168(3):327-31.

  • Structural and electronic analysis of lanthanide complexes: reactivity may not necessarily be independent of the identity of the lanthanide atom--a DFT study. J Phys Chem A. 2006 Oct 5;110(39):11324-31.

  • Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model. J Phys Chem B. 2005 Dec 8;109(48):23043-50.

  • Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med. 2006 May;47(5):807-14.

  • A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers. Health Phys. 2006 May;90(5):409-30.

  • Radiolanthanide-labeled monoclonal antibody CC49 for radioimmunotherapy of cancer: biological comparison of DOTA conjugates and 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 2006 Mar-Apr;17(2):485-92.

  • Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu radionuclides. Cancer Biother Radiopharm. 2005 Aug;20(4):436-49.

  • Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11-. Dalton Trans. 2005 Apr 7;(7):1256-62. Epub 2005 Mar 1.

  • Thermodynamic study of the complexation of trivalent actinide and lanthanide cations by ADPTZ, a tridentate N-donor ligand. Inorg Chem. 2005 Mar 7;44(5):1404-12.

  • Design and coordination behavior of the first selective recognition ligand of 147Pm(III). Dalton Trans. 2004 Feb 21;(4):640-4. Epub 2004 Jan 16.

  • Comparative biokinetics of trivalent radionuclides with similar ionic dimensions: promethium-147, curium-242 and americium-241. Radiat Res. 2007 Sep;168(3):327-31.

  • Structural and electronic analysis of lanthanide complexes: reactivity may not necessarily be independent of the identity of the lanthanide atom--a DFT study. J Phys Chem A. 2006 Oct 5;110(39):11324-31.

  • Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model. J Phys Chem B. 2005 Dec 8;109(48):23043-50.

  • Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med. 2006 May;47(5):807-14.

  • A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers. Health Phys. 2006 May;90(5):409-30.

  • Radiolanthanide-labeled monoclonal antibody CC49 for radioimmunotherapy of cancer: biological comparison of DOTA conjugates and 149Pm, 166Ho, and 177Lu. Bioconjug Chem. 2006 Mar-Apr;17(2):485-92.

  • Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu radionuclides. Cancer Biother Radiopharm. 2005 Aug;20(4):436-49.

  • Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11-. Dalton Trans. 2005 Apr 7;(7):1256-62. Epub 2005 Mar 1.

  • Thermodynamic study of the complexation of trivalent actinide and lanthanide cations by ADPTZ, a tridentate N-donor ligand. Inorg Chem. 2005 Mar 7;44(5):1404-12.

  • Design and coordination behavior of the first selective recognition ligand of 147Pm(III). Dalton Trans. 2004 Feb 21;(4):640-4. Epub 2004 Jan 16.

 

American Elements is a copyrighted U.S. Trademark. All rights reserved.